数量关系计算公式
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=和
6、一个加数=和-另一个加数
7、被减数-减数=差
8、减数=被减数-差
9、被减数=减数+差
10、因数×因数=积
11、一个因数=积÷另一个因数
12、被除数÷除数=商
13、除数=被除数÷商
14、被除数=商×除数
15、有余数的除法:被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
1公里=1千米
1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
1平方米=100平方分米
1平方分米=100平方厘米
几何公式
注:因手机无法显示某数的几次方,故用“^”代替,“^”为幂符号,如X^Y,代表x的y次方,请家长提醒孩子使用课本提及的表达方式。
1.正方形
正方形的周长=边长×4 公式:C=4a
正方形的面积=边长×边长 公式:S=a×a
正方体的体积=边长×边长×边长 公式:V=a×a×a
2.长方形
长方形的周长=(长+宽)×2 公式:C=(a+b)×2
长方形的面积=长×宽 公式:S=a×b
3.三角形
三角形的面积=底×高÷2 公式:S= a×h÷2
4.平行四边形
平行四边形的面积=底×高 公式:S= a×h
5.梯形
梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2
6.圆
直径=半径×2 公式:d=2r
半径=直径÷2 公式:r= d÷2
圆的周长=圆周率×直径 公式:c=πd =2πr
圆的面积=半径×半径×π 公式:S=πr^2
7.直柱体
长方体的表面积=(长×宽+长×高+宽×高)×2,S=(axb+bxh+axh)x2
长方体的体积=底面积x高=长×宽×高 ,V=abh=Sh
正方体的表面积=棱长x棱长x6,S=6a^2
正方体的体积=棱长x棱长x棱长,V=a^3
圆柱的侧面积=底面的周长×高,S=ch=πdh=2πrh
圆柱的表面积=底面的周长×高+两头的圆的面积,S=ch+2s=ch+2πr^2
圆柱的总体积=底面积×高 公式:V=Sh
8.圆锥
圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh
9.三角形内角和=180°
算术概念
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
6.商不变的规律:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:
同分母的分数相比较,分子大的大,分子小的小;
异分母的分数相比较,若分子也不同,先通分再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
22.分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
23.分数相乘法则:用分子的积做分子,用分母的积做分母。
24.什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
25.什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
下一篇:返回列表